3167 measured reflections

intensity decay: 2%

3167 independent reflections 2714 reflections with $I > 2\sigma(I)$

3 standard reflections every 60 min

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methyl-9-[(4-methylphenyl)sulfonyl]thiopyrano[3.4-b]indole-3(9H)-thione

Benjamin Dassonneville,^a Dieter Schollmeyer,^a Bernhard Witulski^b and Heiner Detert^a*

^aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and ^bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France Correspondence e-mail: detert@uni-mainz.de

Received 23 September 2010; accepted 24 September 2010

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.102; data-to-parameter ratio = 13.9.

The title compound, $C_{19}H_{15}NO_2S_3$, is the first example of a dithia analogue of pyrano[3,4-b]indolone. The almost planar thiopyranoindolethione ring system (r.m.s. deviation for all non-H atoms = 0.030 Å) makes a dihedral angle of 80.70 (8)° with the *p*-tolyl ring. In the crystal, molecules are connected via $C-H \cdots O$ hydrogen bonds into two chains along the b axis. These chains are connected via π - π interactions between symmetry-related thiopyranoindolethione ring systems [centroid–centroid distance = 3.588(1) Å].

Related literature

The title compound was synthesized as part of a larger project focusing on metal-catalysed transformations of tethered alkynyl-ynamides to carbazoles (Witulski & Alayrac, 2002) and to carbolines and other heteroannulated indoles (Nissen, 2008; Dassonneville, 2010). The reactivity of such an annulated thiopyranothione could be similar to the respective pyrano[3,4-b]indolone, well known as stable equivalents of indoloquinodimethanes (Plieninger et al., 1964) and valuable intermediates for the synthesis of various heteroannulated indoles, see, for example: Livadiotou et al. (2009).

Experimental

Crystal data

	° 2
$C_{19}H_{15}NO_2S_3$	$V = 1678.05 (19) \text{ A}^3$
$M_r = 385.50$	Z = 4
Monoclinic, $P2_1/n$	Cu $K\alpha$ radiation
a = 13.2530 (4) Å	$\mu = 4.15 \text{ mm}^{-1}$
b = 8.2423 (3) Å	$T = 193 { m K}$
c = 15.4500 (16) Å	$0.60 \times 0.10 \times 0.10$ mm
$\beta = 96.124 \ (3)^{\circ}$	

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: numerical
(de Meulenaer & Tompa, 1965)
$T_{\rm min} = 0.42, \ T_{\rm max} = 0.70$

Refinement

D-

C21 C22

$R[F^2 > 2\sigma(F^2)] = 0.037$	228 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
3167 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H21 \cdots O15^{i}$ $-H22 \cdots O16^{ii}$	0.95 0.95	2.50 2.59	3.387 (3) 3.116 (3)	155 116

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5362).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Dassonneville, B. (2010). PhD thesis, University Mainz, Germany.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Livadiotou, D., Tsoleridis, C. A. & Stephanidou-Stephanatou, J. (2009). Synthesis, 15, 2579-2583.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Nissen, F. (2008). PhD thesis, University Mainz, Germany.
- Plieninger, H., Mueller, W. & Weinerth, K. (1964). Chem. Ber. 97, 667-681.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Witulski, B. & Alayrac, C. (2002). Angew. Chem. Int. Ed. 41, 3281-3284.

Acta Cryst. (2010). E66, o2665 [doi:10.1107/S1600536810038201]

4-Methyl-9-[(4-methylphenyl)sulfonyl]thiopyrano[3,4-b]indole-3(9H)-thione

B. Dassonneville, D. Schollmeyer, B. Witulski and H. Detert

Comment

The title compound is formed *via* a rhodium-catalyzed [2 + 2+2] cycloaddition of a tethered alkynyl-ynamide and carbon disulfide. This unprecedented thiopyranoindolethione is obtained as dark violet crystals. The crystal structure of the title compound forms a network built by two chains along the *b* axis connected *via* hydrogen bonds C21—H21···O15 (2.50 Å) and C22—H21···O16 (2.59 Å). These chains are connected *via* π - π -interactions of two thiopyranoindolethiones related by a center of symmetry [distance between centroids 3.588 (1) Å].

The tricyclic framework is essentially planar with torsion angles of about 2.1 ° or less in the benzene moiety and up to 5.9 ° in the thiopyrane unit. The torsion angle around the biphenyl bond amounts to 176.0 (2) ° (C6,C7,C8,C13). Whereas the N—C bonds in the pyrrole ring are nearly identical, the C—C bond lengths increase in the sequence C2—C7, C7—C8, C8—C13. With 1.459 (3) Å, the biphenyl bond C7—C8 is significantly longer than C2—C3 (1.384 (3) Å) and C8—C13 (1.443 (3) Å). The thiocarbonyl bond length is about 1.668 (2) Å, much shorter than the C—S single bonds with 1.729 (2) Å (C10—S11) and 1.702 (2) Å (S11—C12). Due to steric repulsion of methyl and thiocarbonyl, the S24—C10—S11 bond angle is reduced to 113.07 (13) ° and the C10—S11—C12 bond angle is only 107.07 (11) °.

Experimental

The title compound was prepared from 2-(propynyl)-*N*-ethynyl-*N*-[(4-methylphenyl)sulfonyl)]benzenamine (Witulski & Alayrac, 2002)) as follows: Under Argon (Ar), BINAP (15.6 mg, 0.025 mmol, 10 mol%) and [RhCl(C₈H₁₄)₂]₂ (6.1 mg, 0.0087 mmol, 3.5 mol%) are dissolved in degassed CH₂Cl₂ (3.0 ml) in a Schlenk tube, and the mixture is stirred at room temperature for 5 min. H₂ is then introduced to the resulting solution. After stirring at room temperature for 0.5 h, the resulting solution is concentrated to dryness and the residue dissolved in dichloroethane (DCE) (3.0 ml). To this solution is added dropwise over 1 min a solution of the alkynyl-ynamide (0.25 mmol) and CS₂ (150 µL, 2.5 mmol, 10 equiv.) in DCE (5.0 ml). Undissolved substrate is dissolved by addition of DCE (2x1.0 ml), added to the solution and the mixture is heated to 353 K. After completion of the reaction (3 h, TLC), the solvent is removed and the residue is purified by column chromatography (Al₂O₃, Petroleum ether/Ethyl acetate, 95/5). Violet crystals of the title compound suitable for X-ray analysis were obtained by crystallization from CH₂Cl₂/Petroleum ether.

Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl groups). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom).

Figures

Fig. 1. Perspective view the title compound. Displacement ellipsoids are drawn at the 50% probability level.

4-Methyl-9-[(4-methylphenyl)sulfonyl]thiopyrano[3,4-b]indole- 3(9H)-thione

F(000) = 800 $D_{\rm x} = 1.526 \text{ Mg m}^{-3}$

 $\theta = 60-70^{\circ}$ $\mu = 4.15 \text{ mm}^{-1}$ T = 193 KNeedle, violet

Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 25 reflections

 $0.60\times0.10\times0.10~mm$

$C_{19}H_{15}NO_2S_3$
$M_r = 385.50$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 13.2530 (4) Å
<i>b</i> = 8.2423 (3) Å
c = 15.4500 (16) Å
$\beta = 96.124 (3)^{\circ}$
$V = 1678.05 (19) \text{ Å}^3$
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	2714 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.0000$
graphite	$\theta_{\text{max}} = 69.9^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 16$
Absorption correction: numerical (de Meulenaer & Tompa, 1965)	$k = 0 \rightarrow 10$
$T_{\min} = 0.42, \ T_{\max} = 0.70$	$l = -18 \rightarrow 18$

3167 measured reflections	3 standard reflections every 60 min
3167 independent reflections	intensity decay: 2%

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 0.8161P]$ where $P = (F_o^2 + 2F_c^2)/3$
3167 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
228 parameters	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Refinement

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.30393 (13)	0.4410 (2)	0.44134 (12)	0.0228 (4)
C2	0.29369 (15)	0.4317 (3)	0.53192 (14)	0.0230 (4)
C3	0.21571 (17)	0.4930 (3)	0.57513 (16)	0.0293 (5)
H3	0.1611	0.5518	0.5451	0.035*
C4	0.22049 (18)	0.4654 (3)	0.66365 (16)	0.0336 (5)
H4	0.1683	0.5064	0.6952	0.040*
C5	0.30000 (19)	0.3790 (3)	0.70717 (16)	0.0346 (5)
H5	0.3005	0.3596	0.7678	0.042*
C6	0.37865 (18)	0.3204 (3)	0.66405 (15)	0.0309 (5)
H6	0.4333	0.2625	0.6947	0.037*
C7	0.37639 (15)	0.3478 (2)	0.57428 (14)	0.0222 (4)
C8	0.44351 (15)	0.3017 (2)	0.50942 (14)	0.0211 (4)
C9	0.53663 (16)	0.2244 (3)	0.52013 (15)	0.0243 (4)
C10	0.58968 (16)	0.1801 (3)	0.44741 (16)	0.0263 (5)
S11	0.54433 (4)	0.23832 (8)	0.34297 (4)	0.03407 (17)
C12	0.43366 (17)	0.3397 (3)	0.34993 (15)	0.0303 (5)

H12	0.3984	0.3847	0.2987	0.036*
C13	0.39482 (15)	0.3576 (2)	0.42680 (14)	0.0217 (4)
S14	0.20305 (4)	0.46546 (6)	0.36740 (4)	0.02438 (15)
015	0.15035 (12)	0.60556 (19)	0.39288 (12)	0.0353 (4)
O16	0.24145 (12)	0.4613 (2)	0.28475 (11)	0.0367 (4)
C17	0.12629 (15)	0.2950 (2)	0.37845 (13)	0.0194 (4)
C18	0.02728 (16)	0.3153 (3)	0.39707 (15)	0.0268 (5)
H18	0.0018	0.4205	0.4072	0.032*
C19	-0.03435 (16)	0.1799 (3)	0.40080 (15)	0.0276 (5)
H19	-0.1023	0.1931	0.4137	0.033*
C20	0.00193 (16)	0.0253 (3)	0.38587 (14)	0.0238 (4)
C21	0.10251 (16)	0.0078 (3)	0.36982 (14)	0.0254 (5)
H21	0.1288	-0.0977	0.3619	0.031*
C22	0.16513 (16)	0.1414 (3)	0.36515 (14)	0.0252 (5)
H22	0.2335	0.1283	0.3531	0.030*
C23	-0.06630 (18)	-0.1206 (3)	0.38685 (16)	0.0301 (5)
H23A	-0.1058	-0.1136	0.4368	0.045*
H23B	-0.0250	-0.2195	0.3914	0.045*
H23C	-0.1125	-0.1236	0.3329	0.045*
S24	0.69645 (4)	0.07193 (8)	0.45140 (5)	0.04028 (18)
C25	0.58643 (19)	0.1818 (3)	0.60888 (17)	0.0365 (6)
H25A	0.5844	0.2758	0.6475	0.055*
H25B	0.6572	0.1509	0.6048	0.055*
H25C	0.5503	0.0908	0.6324	0.055*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0188 (8)	0.0218 (9)	0.0278 (9)	0.0008 (7)	0.0021 (7)	0.0015 (7)
C2	0.0217 (10)	0.0168 (10)	0.0303 (11)	-0.0057 (8)	0.0021 (8)	-0.0027 (8)
C3	0.0239 (11)	0.0226 (11)	0.0419 (13)	-0.0002 (9)	0.0058 (9)	-0.0042 (10)
C4	0.0323 (12)	0.0306 (13)	0.0397 (13)	-0.0057 (10)	0.0124 (10)	-0.0098 (10)
C5	0.0410 (13)	0.0341 (13)	0.0299 (12)	-0.0074 (11)	0.0089 (10)	-0.0040 (10)
C6	0.0328 (12)	0.0296 (12)	0.0300 (11)	-0.0031 (10)	0.0023 (9)	0.0013 (10)
C7	0.0225 (10)	0.0144 (10)	0.0295 (11)	-0.0048 (8)	0.0021 (8)	-0.0003 (8)
C8	0.0215 (10)	0.0142 (9)	0.0276 (10)	-0.0039 (8)	0.0021 (8)	0.0010 (8)
C9	0.0207 (10)	0.0166 (10)	0.0354 (11)	-0.0020 (8)	0.0014 (8)	0.0027 (9)
C10	0.0192 (10)	0.0168 (10)	0.0435 (13)	-0.0028 (8)	0.0057 (9)	0.0016 (9)
S11	0.0296 (3)	0.0377 (3)	0.0369 (3)	0.0052 (2)	0.0126 (2)	0.0018 (3)
C12	0.0257 (11)	0.0360 (13)	0.0296 (11)	0.0038 (10)	0.0044 (9)	0.0049 (10)
C13	0.0185 (9)	0.0172 (10)	0.0293 (11)	-0.0017 (8)	0.0020 (8)	0.0021 (8)
S14	0.0203 (3)	0.0180 (3)	0.0340 (3)	-0.00007 (19)	-0.0006 (2)	0.0073 (2)
015	0.0286 (8)	0.0155 (8)	0.0602 (11)	0.0028 (7)	-0.0026 (8)	0.0043 (7)
O16	0.0284 (8)	0.0483 (11)	0.0328 (9)	-0.0043 (8)	0.0003 (7)	0.0169 (8)
C17	0.0197 (9)	0.0135 (10)	0.0245 (10)	0.0000 (8)	0.0005 (8)	0.0010 (8)
C18	0.0218 (10)	0.0175 (11)	0.0408 (12)	0.0042 (8)	0.0027 (9)	-0.0034 (9)
C19	0.0217 (10)	0.0225 (11)	0.0394 (12)	0.0003 (9)	0.0066 (9)	-0.0045 (9)
C20	0.0273 (11)	0.0193 (11)	0.0241 (10)	-0.0005 (9)	-0.0006 (8)	-0.0012 (8)

C21	0.0295 (11)	0.0158 (10)	0.0305 (11)	0.0054 (9)	0.0008 (9)	-0.0043 (9)	
C22	0.0224 (10)	0.0233 (11)	0.0301 (11)	0.0047 (9)	0.0045 (8)	-0.0014 (9)	
C23	0.0346 (12)	0.0206 (11)	0.0345 (12)	-0.0052 (9)	0.0011 (9)	-0.0017 (9)	
S24	0.0255 (3)	0.0312 (3)	0.0654 (4)	0.0079 (2)	0.0110 (3)	0.0038 (3)	
C25	0.0316 (12)	0.0363 (14)	0.0401 (13)	0.0056 (11)	-0.0034 (10)	0.0049 (11)	
Geometric paran	neters (Å, °)						
N1—C2		1.422 (3)	C17-	—C22	1.1	390 (3)	
N1—C13		1.425 (3)	C18	—C19	1.	388 (3)	
N1—S14		1.6756 (18)	C19—C20 1.3 ⁴		390 (3)		
C2—C3		1.384 (3)	C20—C21		1.	389 (3)	
С2—С7		1.398 (3)	C20—C23 1.50		505 (3)		
C3—C4		1.381 (3)	C21	—C22	1.:	385 (3)	
C4—C5		1.385 (4)	С3—Н3		0.9	9500	
C5—C6		1.383 (3)	C4–	-H4	0.9	9500	
C6—C7		1.403 (3)	C5–	С5—Н5		9500	
С7—С8		1.459 (3)	C6–	-H6	0.9	9500	
С8—С9		1.383 (3)	C12	C12—H12		0.9500	
C8—C13		1.443 (3)	C18	—H18	0.9	9500	
C9—C10		1.435 (3)	C19	—H19	0.9	9500	
C9—C25		1.499 (3)	C21	—H21	0.9	9500	
C10—S24		1.668 (2)	C22	—H22	0.9	9500	
C10—S11		1.729 (2)	C23	—H23A	0.9	9800	
S11—C12		1.702 (2)	C23	—Н23В	0.9	9800	
C12—C13		1.352 (3)	C23	—Н23С	0.9	9800	
S14—O16		1.4245 (18)	C25	—H25A	0.9	9800	
S14—O15		1.4265 (17)	C25	—H25B	0.9	9800	
S14—C17		1.754 (2)	C25	—H25C	0.9	9800	
C17—C18		1.383 (3)					
C2—N1—C13		107.46 (17)	C18		12	21.0 (2)	
C2—N1—S14		121.62 (14)	C21		11	8.7 (2)	
C13—N1—S14		125.24 (15)	C21		12	20.5 (2)	
C3—C2—C7		122.9 (2)	C19		12	20.8 (2)	
C3—C2—N1		127.5 (2)	C22		12	21.2 (2)	
C7—C2—N1		109.56 (18)	C21	—C22—C17	11	8.86 (19)	
C4—C3—C2		117.4 (2)	C2-	-С3—Н3	12	21.00	
C3—C4—C5		121.2 (2)	C4	-С3—Н3	12	21.00	
C6—C5—C4		121.3 (2)	C3–	C4H4	11	9.00	
C5—C6—C7		118.8 (2)	C5–	C4H4	11	9.00	
C2—C7—C6		118.4 (2)	C4	-C5-H5	11	9.00	
C2—C7—C8		108.18 (18)	C6–	-C5-H5	11	9.00	
C6—C7—C8		133.4 (2)	C5–	-С6—Н6	12	21.00	
C9—C8—C13		124.2 (2)	С7—	-С6—Н6	12	21.00	
C9—C8—C7		129.7 (2)	S11-		11	9.00	
C13—C8—C7		106.06 (17)	C13		11	9.00	
C8—C9—C10		121.9 (2)	C17-		12	20.00	
C8—C9—C25		121.2 (2)	C19		12	20.00	
C10—C9—C25		116.88 (19)	C18	—С19—Н19	11	9.00	

C9—C10—S24	126.28 (18)	С20—С19—Н19	120.00
C9—C10—S11	120.65 (16)	C20—C21—H21	119.00
S24—C10—S11	113.07 (13)	C22—C21—H21	119.00
C12—S11—C10	107.07 (11)	С17—С22—Н22	121.00
C13—C12—S11	121.37 (18)	C21—C22—H22	121.00
C12—C13—N1	126.8 (2)	С20—С23—Н23А	109.00
C12—C13—C8	124.5 (2)	C20—C23—H23B	109.00
N1—C13—C8	108.67 (18)	С20—С23—Н23С	109.00
O16—S14—O15	119.95 (11)	H23A—C23—H23B	110.00
O16—S14—N1	105.83 (9)	H23A—C23—H23C	109.00
O15—S14—N1	106.73 (10)	H23B—C23—H23C	109.00
O16—S14—C17	109.53 (10)	С9—С25—Н25А	110.00
O15—S14—C17	108.39 (10)	С9—С25—Н25В	109.00
N1—S14—C17	105.43 (9)	С9—С25—Н25С	109.00
C18—C17—C22	121.02 (19)	H25A—C25—H25B	109.00
C18—C17—S14	119.77 (16)	H25A—C25—H25C	109.00
C22-C17-S14	119.17 (16)	H25B—C25—H25C	109.00
C17—C18—C19	119.2 (2)		
C13—N1—C2—C3	-178.6(2)	S11—C12—C13—C8	3.1 (3)
S14—N1—C2—C3	-24.0 (3)	C2—N1—C13—C12	-178.9 (2)
C13—N1—C2—C7	1.1 (2)	S14—N1—C13—C12	27.6 (3)
\$14—N1—C2—C7	155.80 (15)	C2—N1—C13—C8	-2.3 (2)
C7—C2—C3—C4	-1.5 (3)	S14—N1—C13—C8	-155.83 (15)
N1—C2—C3—C4	178.3 (2)	C9—C8—C13—C12	0.7 (3)
C2—C3—C4—C5	-0.3 (3)	C7—C8—C13—C12	179.3 (2)
C3—C4—C5—C6	1.5 (4)	C9—C8—C13—N1	-176.00 (19)
C4—C5—C6—C7	-0.9 (4)	C7—C8—C13—N1	2.6 (2)
C3—C2—C7—C6	2.1 (3)	C2—N1—S14—O16	-177.20 (16)
N1—C2—C7—C6	-177.71 (18)	C13—N1—S14—O16	-27.17 (19)
C3—C2—C7—C8	-179.74 (19)	C2—N1—S14—O15	53.96 (18)
N1—C2—C7—C8	0.5 (2)	C13—N1—S14—O15	-156.01 (17)
C5—C6—C7—C2	-0.8 (3)	C2—N1—S14—C17	-61.18 (18)
C5—C6—C7—C8	-178.5 (2)	C13—N1—S14—C17	88.86 (18)
C2—C7—C8—C9	176.6 (2)	O16—S14—C17—C18	-124.30 (18)
C6—C7—C8—C9	-5.6 (4)	O15—S14—C17—C18	8.3 (2)
C2—C7—C8—C13	-1.9 (2)	N1-S14-C17-C18	122.24 (18)
C6—C7—C8—C13	176.0 (2)	O16—S14—C17—C22	53.38 (19)
C13—C8—C9—C10	-5.5 (3)	O15—S14—C17—C22	-174.07 (17)
C7—C8—C9—C10	176.3 (2)	N1—S14—C17—C22	-60.09 (19)
C13—C8—C9—C25	175.0 (2)	C22-C17-C18-C19	-1.2 (3)
C7—C8—C9—C25	-3.2 (3)	S14-C17-C18-C19	176.40 (17)
C8—C9—C10—S24	-173.91 (17)	C17—C18—C19—C20	-0.2 (3)
C25—C9—C10—S24	5.6 (3)	C18-C19-C20-C21	2.1 (3)
C8—C9—C10—S11	5.9 (3)	C18—C19—C20—C23	-177.8 (2)
C25—C9—C10—S11	-174.60 (17)	C19—C20—C21—C22	-2.5 (3)
C9—C10—S11—C12	-2.1 (2)	C23—C20—C21—C22	177.3 (2)
S24—C10—S11—C12	177.70 (12)	C20—C21—C22—C17	1.2 (3)
C10—S11—C12—C13	-2.2 (2)	C18—C17—C22—C21	0.8 (3)
S11—C12—C13—N1	179.22 (17)	S14—C17—C22—C21	-176.89 (16)

Hydrogen-bond geometry (Å, $^{\circ}$)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A				
C21—H21···O15 ⁱ	0.95	2.50	3.387 (3)	155				
C22—H22···O16 ⁱⁱ	0.95	2.59	3.116 (3)	116				
Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1/2, y-1/2, -z+1/2$.								

